- 1 Q. Please state the names of the panel members.
- 2 A. Margaret M. Lenz, Patrick F. Hourihane and Hock G. Ng
- 3 ("Forecasting Panel").
- 4 Q. Have you previously submitted direct testimonies in this
- 5 proceeding?
- 6 A. Yes, we have.
- 7 Q. What is the purpose of your rebuttal testimony?
- 8 A. Our rebuttal testimony responds to the direct testimonies
- 9 of State of New York Department of Public Service
- 10 witnesses Anping Liu and the Staff Rate Panel ("Staff
- 11 testimonies") and the City of New York witness Harvey
- 12 Arnett ("City's testimonies") relating to their
- adjustments to the Company's sales and revenue forecasts.
- 14 STAFF TESTIMONIES
- 15 Q. Have you reviewed Mr. Liu's proposed adjustments to your
- sales volume forecast?
- 17 A. Yes.
- 18 Q. What are Mr. Liu's adjustments?
- 19 A. He proposed an upward adjustment of about 220
- 20 gigawatthours (GWH) to our sales volume forecast for the
- 21 rate year ending March 2009 by making changes in the
- 22 following five areas:

1		(1) He introduced a real personal income variable as an
2		independent variable in the forecasting models for
3		service classes (SC) 1 and 7.
4		(2) He removed a dummy variable for the third quarters
5		of 2005 and 2006 in the forecasting model for SC 1.
6		(3) He increased the forecasted number of customers for
7		SC 1, SC 2 and SC 7 by 1,892, 553 and 177,
8		respectively, for the rate year ending March 2009.
9		(4) He increased the Company's normal cooling degree-
10		days.
11		(5) He replaced the price deflators used to obtain the
12		real price of elasticity.
13		Personal Income Variable
14	Q.	How did Mr. Liu introduce a personal income variable in
15		the sales forecasting models for SC 1 and SC 7?
16	Α.	Mr. Liu summed the annual Total Nominal Personal Income
17		for the five New York boroughs and Westchester, divided
18		the sum by the Consumer Price Index for All Urban
19		Consumers (CPI-U) to get Real Personal Income, and
20		divided that result by Population to get Per Capita Real
21		Income Mr Liu then converted the annual figures to

FORECASTING PANEL - REBUTTAL ELECTRIC

quarterly figures using EView's "quadratic averaging

2		conversion" option.
3	Q.	Please explain why you disagree with Mr. Liu's use of the
4		Personal Income variable.
5	A.	The use of a personal income variable, especially real
6		disposable personal income, is theoretically sound.
7		However, real disposable personal income for the
8		Company's service area is not available, while data on
9		personal income and population are available only on an
10		annual basis and with up to a two-year lag. This
11		necessitates the construction of the quarterly historical
12		data for Per Capita Real Income, which leads to the
13		introduction of estimation errors in two ways. First,
14		the method for converting the annual figures to quarterly
15		figures is arbitrary and may not reflect the actual
16		quarterly figures. Second, the actual annual data is
17		available only through 2005, while the sales volume
18		forecasting models are estimated for the period from the
19		first quarter of 1981 through the fourth quarter of 2006.
20		Hence, data on real income for 2006 had to be estimated.
21		Without knowing how the accuracies of the sales volume
22		forecasting models are affected by the use of estimated

- 3 -

- data, it is difficult to place confidence in the forecasts produced.

 Dummy Variable in SC 1 Model
- 4 Q. Please explain Mr. Liu's disagreement with the use of the dummy variable in the sales forecasts for SC 1.
- A. The dummy variable was included in the SC 1 forecasting
 model to account for the exceptional response of sales to
 the unusual weather conditions in the third quarters of
 2005 and 2006. We had provided an analysis in our
 response to Staff 11(2) and 167 to show that daily
 sendout was more responsive to changes in cooling degree
- days (CDD) during the days when the daily CDD was high in
- the third quarters of 2005 and 2006. Mr. Liu provided
- 14 arguments that this analysis does not support the
- inclusion of the dummy variable.
- 16 O. What are his arguments?
- 17 A. His first argument was that the analysis was for total

 18 sendout, not SC 1. He pointed out that SC 1 sales were

 19 only about 26 percent of sendout and that the models for

 20 the other service classes did not include this dummy

 21 variable. He took the absence of the dummy variable from
- the other models as suggesting that the impact of the

- 1 unusual weather in the third quarters of 2005 and 2006
- 2 can be explained by the weather variables in the model.
- 3 Q. Do you agree with this?
- 4 A. No. Actually, Mr. Liu's observations support our
- findings that SC 1 sales are much more responsive to
- 6 unusually hot weather conditions than sales of the other
- 7 service classes. The fact that there is a significant
- 8 increase in the responsiveness of sendout to changes in
- 9 CDD during high-CDD days even though the other service
- 10 classes did not exhibit significant changes in their
- 11 responses indicates that the change in the response of
- sendout was mostly due to exceptional response in SC 1
- sales. Furthermore, since SC 1 sales is only about 26
- 14 percent of sendout, the increase in SC 1 sales due to
- unusually hot weather conditions must have been very
- large to cause sendout to show a significant change on
- 17 very hot days.
- 18 Q. What other argument did he provide?
- 19 A. His second argument for the removal of the dummy variable
- 20 was that the change in responsiveness of sales to weather
- 21 was a result of a surge in the saturation of cooling
- 22 appliances, and that the level of responsiveness will not

FORECASTING PANEL - REBUTTAL ELECTRIC

go down when weather returns to normal. He implied that

since the level of responsiveness will remain elevated 2 the dummy variable should not take on value of 0 in the 3 4 future. Do you agree with this? 5 Ο. This argument is not supported by evidence and is 6 Α. 7 misleading. First, Mr. Liu did not define what he meant 8 by a "surge" or explain how he came to the conclusion 9 that there was a "surge" in the saturation of cooling 10 appliances. He also did not provide any data or study to 11 support his claim that "the level of responsiveness will 12 not go down when weather returns to normal." Appliance saturation rates only measure the number of units of 13 14 cooling appliances that each household owns, not if, or 15 how often, the appliances are actually used. Even if the 16 saturation rates of cooling appliances had increased, it 17 does not necessarily follow that consumers will use the added cooling appliances when weather is normal. 18 19 Mr. Liu confused the exceptional response of sales to an 20 unusual event with a change in responsiveness of sales. 21 The dummy variable captures the exceptional sales 22 response in the third quarters of 2005 and 2006, not the

1		change in responsiveness of sales to weather changes.
2		The responsiveness of sales to changes in weather during
3		normal conditions is already captured by the weather
4		variables included in the model. A change in the
5		saturation rate would affect the base load and,
6		therefore, the constant term of the model. The
7		exceptional response of sales to unusual weather like
8		that experienced in the third quarters of 2005 and 2006
9		is the result of more than a change in the saturation
10		rate of cooling appliances, and is temporary in nature.
11		The Company's sales forecasting model for SC 1 is dynamic
12		in nature and includes ARIMA terms. The dummy variable
13		is included merely to prevent the ARIMA terms in the
14		model from carrying the temporary effect of unusual
15		weather over into the forecast period when weather is
16		assumed to be normal.
17	Q.	What analysis did Mr. Liu provide to support the removal
18		of the dummy variable?
19	A.	Mr. Liu re-estimated the SC 1 sales volume forecasting
20		model on a shortened sample through the fourth quarter of
21		2005, and used it to provide ex-post forecasts of sales
22		in the third quarter of 2006 under three scenarios. In

- 7 -

1 the first scenario, he included the dummy variable and assigned it to take a value of 0 in the third quarter of 2 In the second scenario, he also included the dummy 3 4 variable, but assigned it to take a value of 1 in the third quarter of 2006. In the third scenario, he 5 excluded the dummy variable from the model. His results, 6 7 depicted in page 1 of his Exhibit ____ (AL-2), show that 8 the first scenario produced the forecast that is furthest from the actual sales, while the second scenario produced 9 the forecast that is closest to the actual sales. 10 11 inferred from these results that the Company's approach 12 produced the "worst" forecast. In spite of the second 13 scenario's best performance, he went on to recommend that 14 the approach in the third scenario be adopted by arquing 15 that "the dummy variable may assume some value between 0 16 and 1." 17 Do you agree with Mr. Liu's analysis? Q. No. Mr. Liu's analysis does not correctly interpret the 18 Α. 19 use of the dummy variable. A dummy variable takes on a 20 value of 1 when the special event it is designed to 21 capture is present, and a value of 0 if the event is not It is not meant to take on intermediate values 22 present.

-8 -

FORECASTING PANEL - REBUTTAL ELECTRIC

because the special event is either present or it is not.

2		Impacts of any change in appliance saturation rates are
3		picked up by the constant term.
4	Q.	Does Mr. Liu's statistical analysis support the removal
5		of the dummy variable?
6	Α.	No. In page 8 of Mr. Liu's testimony, he incorrectly
7		attributes the first scenario as the Company's approach.
8		In our forecasting model for SC 1, the dummy variable
9		takes on a value of 1 in the third quarter of 2006
LO		because unusually high CDD days were present in that
L1		period. Thus, the Company's approach is represented by
L2		the second scenario, where the dummy takes on a value of
L3		1 in the third quarter, which produced the best forecast.
L4		Mr. Liu's ex-post forecasting results only show that our
L5		model with the dummy variable to capture the impact of
L6		usual weather in the third quarters of 2005 and 2006
L7		produces a better forecast for the third quarter of 2006
L8		than the model without the dummy variable. Thus, the
L9		dummy variable should be retained. The Company's
20		rationale for assigning a value of 0 to the dummy
21		variable in future years is that weather is assumed to be
22		normal.

- 9 -

Т		Forecast of Number of Customers
2	Q.	Mr. Liu adjusted the forecasted number of customers SC 1,
3		SC 2 and SC 7 by 1,892, 553 and 177, respectively, for
4		the rate year ending March 2009. Do you agree with these
5		adjustments?
6	A.	No. Mr. Liu has not shown that his model for the number
7		of SC 1 customers is better than the Company's model. He
8		claims that his model for the SC 1 number of customers is
9		superior in both goodness-of-fit and forecast evaluation,
10		but he does not explain how it is better in goodness-of-
11		fit. While the regression statistics shown in pages 3
12		through 4 of Mr. Liu's workpapers indicate that his model
13		for the number of SC 1 customers (NCO1) has a higher ${ m R}^2$
14		value than the Company's model, it should be noted it is
15		not valid to use ${\ensuremath{\mbox{R}}}^2$ as a basis to compare goodness-of-fit
16		in this instance because the two models have different
17		dependent variables. Staff's model has NC01 as the
18		dependent variable while the Company's model has the
19		year-on-year difference in NC01 as the dependent
20		variable. Valid criteria for model comparison in such a
21		situation include loglikelihood, Akaike Information
22		Criterion (AIC), and Schwarz Criterion (SC). The

-10 -

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

FORECASTING PANEL - REBUTTAL ELECTRIC

regression statistics indicate that the Company's model has higher loglikelihood, lower AIC and lower SC, all of which indicate that the Company's model has a better fit.

As for forecast evaluation, Mr. Liu performed a twoyear ex-post evaluation by estimating the Staff and Company models through the fourth quarter of 2004 and using the estimated models to forecast NC01 for the period from the first quarter of 2005 through the fourth quarter of 2006. The results shown in pages 3 through 4 of Mr. Liu's workpapers indicate that his model performed better in terms of Root Mean Squared Error, Mean Absolute Error, and Mean Absolute Percent Error. The results are reversed, however, when the same analysis is performed using a three-year ex-post evaluation. By estimating the models through the fourth quarter of 2003 and using the estimated models to forecast NC01 for the period from the first quarter of 2004 through the fourth quarter of 2006, the results indicate that the Company model performed better based on the same forecast evaluation criteria. These results are shown in Staff's response to the Company's Information Request CONED-51, titled by Staff

- 11 -

1		as "Attachment to Staff Response to Con Edison IR-53" and
2		attached here as Exhibit (FP-4).
3		MARK FOR IDENTIFICATION AS EXHIBIT (FP-4)
4		Normal Weather
5	Q.	Do you agree that the normal CDD should include normal
6		CDD for all months as Mr. Liu asserts, not just for the
7		months of May through October?
8	Α.	No. CDD is used as a measurement to capture the impact
9		of weather on customers' use of air conditioning
10		appliances, which normally occurs in the period from May
11		through October. While it is possible to have CDD
12		outside the May through October period, the incorporation
13		of these CDD in the normal is inconsistent with the
14		practice of the experts at the National Weather Service
15		Bureau. The 30-year average is smoothed so that normal
16		CDD shows a gradual increase as we enter summer and a
17		gradual decrease as we enter fall. This leads to
18		negligible levels of CDD for each day outside the May
19		through October period. For example, when the total 30-
20		year average CDD of 15 for April is smoothed out over the
21		thirty days of the month, the normal CDD for each day is
22		about 0.5. It is not realistic to assume that customers

-12 -

- will turn their cooling appliances on when there is only

 0.5 CDD.
- 3 Price Deflators
- 4 Q. What adjustments did Mr. Liu make to the electric price
- 5 variables?
- 6 A. Mr. Liu replaced the price deflator that the Company used
- 7 to calculate the real electric prices with the Consumer
- 8 Price Index for All Urban Consumers and the GDP Price
- 9 Index in the calculating the real electric prices for
- 10 residential customers and the commercial and industrial
- 11 customers respectively.
- 12 Q. Do you agree with these adjustments?
- 13 A. The changes in price deflators that Mr. Liu proposed are
- 14 acceptable. The effect on the sales forecast of changing
- the price deflators alone, however, is minimal. The
- 16 Company's total sales volume would decrease by only 1 GWH
- if all the real electric price variables were replaced by
- 18 those that Mr. Liu proposed, keeping everything else in
- 19 the models unchanged.
- 20 Price Out of Staff's Sales Forecast
- 21 Q. Have you reviewed the Staff Rate Panel's proposed price
- out of Staff's sales volume forecast?

- 1 A. Yes.
- 2 Q. Do you agree with the Staff Rate Panel's proposed revenue
- adjustment of \$18.4 million given Staff's sales
- 4 adjustments?
- 5 A. No.
- 6 Q. Please explain.
- 7 A. Staff used the Company's pricing models to determine the
- 8 Con Edison delivery revenue forecast associated with
- 9 their sales forecast. They used these models correctly.
- 10 However, we disagree with the sales and demand forecasts
- 11 that Staff applied to the pricing equations.
- 12 Q. Didn't Staff apply the sales forecast recommended by Mr.
- 13 Liu?
- 14 A. The sales forecast used in Staff's revenue forecast is 10
- 15 GWH higher than the level proposed by Mr. Liu.
- 16 Q. Are there any other issues with respect to Staff's
- 17 pricing of the sales forecast?
- 18 A. Yes. The sales forecasting models developed by Mr. Liu
- 19 determined total service class sales. For some service
- classes, such as SCs 4 and 9, total sales need to be
- 21 further segregated between conventional and time-of-day
- 22 due to different pricing structures. This allocation is

1		based on historical relationships. The Company provided
2		Staff these allocation percents as part of an
3		interrogatory response. However, Staff applied these
4		percents to the final sales figures for these classes
5		after taking into account DSM reductions, not to the
6		sales figures prior to DSM reductions. Instead, Staff
7		should have allocated the sales between conventional and
8		time-of-day first, then deducted the DSM effect. By
9		applying these percents to the final class sales, Staff
10		assumed that the DSM measures will be in the same
11		proportion as the conventional and time-of-day sales.
12		This assumption does not hold true.
13	Q.	What is the issue with the demand forecast?
14	A.	Staff determined the demand forecast based on their final
15		sales forecast after taking into account savings from
16		proposed demand side management programs. However, the
17		demand forecast should be determined by first applying
18		the forecasted hours use to the sales forecast prior to
19		the reductions due to DSM and then manually subtracting
20		the estimated DSM savings.
21	Q.	Had you assumed Staff's sales forecast but modified it to
22		reflect the correct treatment of the issues discussed

- 15 -

1		above, what impact would these changes have on the
2		Staff's delivery revenue adjustment of \$18.4 million?
3	Α.	Staff's delivery revenue adjustment of \$18.4 million
4		would be reduced to \$12.4 million since Staff's delivery
5		revenue forecast is overstated by \$6.0 million.
6	Q.	The Staff Rate Panel states in its testimony "Since the
7		sales forecast takes into consideration the Company's
8		revenue requirement, which is subject to change during
9		the course of this proceeding, the level of sales, and
10		the resulting revenues, will also be subject to change.
11		Therefore, we propose that this adjustment be updated
12		when Staff files its final brief in this proceeding."
13		(pp. 28-29). Do you agree with this statement?
14	A.	No, we do not. Staff made the erroneous conclusion that
15		we factored into our sales forecast the price elasticity
16		effect (or the customers' response to the increase in
17		price) related to the rate increase requested by the
18		Company in this proceeding. Not only does the forecasted
19		real electric price exclude the proposed rate increase,
20		it also excludes the actual increase that went into
21		effect April 1, 2007. As quoted in the Forecasting Panel
22		testimony, "For forecasting purposes, we assumed that the

1		real electric price remains at the 2006 level and does
2		not include the April 2007 rate increase." Therefore,
3		there is no basis to update the sales forecast to reflect
4		the final revenue requirement.
5	Q.	Are you saying that the sales forecast should not be
6		updated?
7	A.	No. We also believe that the sales, demand and resulting
8		delivery revenue forecast should be updated, but for a
9		different reason.
10	Q.	Please explain.
11	A.	The Company's sales and demand forecast assumes a
12		forecasted level of savings related to the Company's
13		proposed demand side management program in this
14		proceeding. The final sales, demand and delivery revenue
15		forecast approved in this proceeding should reflect the
16		forecasted savings associated with the demand side
17		management program approved in this proceeding.
18		Accordingly, the Company's revenue requirement should be
19		updated to reflect the final DSM program costs and final
20		delivery revenue forecast based on the final approved
21		demand side management program.

1 CITY TESTIMONY 2 On sales volume forecasting, the City's witness Harvey Q. 3 Arnett considered the Company's adjustment to the sales forecast to remove the future impact of DSM as "a double 4 5 count of the impact of DSM." How did he justify that? 6 Mr. Arnett argued that since the historical data Α. 7 contained DSM impacts of prior DSM programs, the forecasts from the sales models would include the DSM 8 impacts already. He claimed that "because DSM has 9 10 dampened sales over time, the effect of the sales models 11 is to dampen the coefficients for the model's independent 12 variables." To support this assertion, he conducted an 13 analysis where he estimated a "simplified" version of the Company's sendout model using three different sendout 14 data series. The first sendout series was the actual 15 sendout and the other two series were artificially 16 17 constructed using hypothetical assumptions. The second sendout series was based on an assumed "compound growth 18 rate in DSM of 0.2 percent per year" (p. 17), while the 19 third sendout series was based on "a variable impact of 20 21 DSM, ... 0.1 percent through 1990 and 0.3 thereafter, ... 22 compounded annually." (p. 18) Applying linear

FORECASTING PANEL - REBUTTAL ELECTRIC

regressions to these data sets, he produced the results

in his Exhibit ____ (HA-2). 2 3 Ο. Do you agree with Mr. Arnett's analysis? 4 Mr. Arnett's analysis is based on hypothetical data Α. 5 that do not reflect the actual DSM impact of prior DSM programs and uses a simplified regression model that 6 7 misses an important part of the Company's sales 8 forecasting models, the ARIMA terms. Both of the 9 constructed sendout series that Mr. Arnett used assumed 10 that the DSM impact was growing throughout the estimation 11 In reality, the Company's sponsored DSM programs period. 12 do not have a continuously growing impact. For example, 13 the last major Company sponsored DSM program operated 14 from 1989 through 1998. Whatever impact that program had 15 on sales would have been picked up by the ARIMA terms in 16 the Company's sales forecasting models. Given the 17 significant gap between the end of that program and the beginning of the sales forecasting period, the impact of 18 19 DSM in that period had long been fully accounted for in 20 the sales data and no further effect can be extrapolated 21 from the data. Therefore, any new DSM programs would

- 1 reduce sales. The DSM programs proposed by the Company
- 2 are incremental to prior DSM programs.
- 3 Q. Does this conclude your rebuttal testimony?
- 4 A. Yes. It does.

Attachment to Staff Response to Con Edison IR-53

Dependent Variable: D(NC01,0,4)

Method: Least Squares

Date: 09/19/07 Time: 14:48

Sample: 1981Q1 2003Q4 Included observations: 92

Convergence achieved after 15 iterations

Backcast: 1979Q4 1980Q4

=======================================		===========	=======
Variable	Coefficien	Std. Errort-Statistic	Prob.
==============		=======================================	=======
C	13.64884	0.344922 39.57078	0.0000
AR(1)	0.889035	0.056997 15.59788	0.0000
MA(1)	0.273511	0.107986 2.532842	0.0131
SMA (4)	-0.936344	0.027904 -33.55548	0.0000
=======================================			=======
R-squared	0.854335	Mean dependent var	13.35732
Adjusted R-squared	0.849369	S.D. dependent var	4.450590
S.E. of regression	1.727325	Akaike info criter	i3.973530
Sum squared resid	262.5614	Schwarz criterion	4.083173
Log likelihood	-178.7824	F-statistic	172.0424
Durbin-Watson stat	1.914290	Prob(F-statistic)	0.000000
===============	=======	=======================================	=======
Inverted AR Roots Inverted MA Roots	.89	00+.90098i	27
	98		

Forecast Evaluation

Forecast: NC01FX Actual: NC01

Forecast sample: 2004Q1 2006Q4 Included observations: 12

Root Mean Squared Error 8.281405
Mean Absolute Error 7.735924
Mean Absolute Percentage Error0.287367
Theil Inequality Coefficient 0.001534
Bias Proportion 0.872602
Variance Proportion 0.032826
Covariance Proportion 0.094571

Dependent Variable: NC01 Method: Least Squares

Included observations: 91 after adjustments Convergence achieved after 9 iterations

Backcast: 1980Q2 1981Q1

Variable CoefficienStd. Errort-Statistic Prob.

TREND	3.418290	0.066647	51.28939	0.0000
AR(1)	0.800020	0.068817	11.62539	0.0000
MA(4)	0.473101	0.095188	4.970186	0.0000
=======================================		========		=======
R-squared	0.999379	Mean depend	dent var	2531.054
Adjusted R-squared	0.999357	S.D. depend	dent var	91.08723
S.E. of regression	2.309498	Akaike info	o criteri	4.554898
Sum squared resid	464.0390	Schwarz cr	iterion	4.665266
Log likelihood	-203.2479	F-statistic	C	46637.05
Durbin-Watson stat	1.809130	Prob(F-stat	tistic)	0.000000
=======================================		=========		
Inverted AR Roots	.80			
Inverted MA Roots	.59+.59i	.59+.5 -	.5959i-	5959i

Forecast Evaluation

Forecast: NC01FSX

Actual: NC01

Forecast sample: 2004Q1 2006Q4

Included observations: 12

Root Mean Squared Error 8.706656 Mean Absolute Error 8.317727

Mean Absolute Percentage Error0.308818

Theil Inequality Coefficient 0.001613

Bias Proportion 0.912655 Variance Proportion 0.008836

Covariance Proportion 0.078509

========	=========	========	========
obs	NC01	NC01FX	NC01FSX
=======	========	========	=======
2004Q1	2680.322	2683.413	2683.498
2004Q2	2677.040	2686.894	2686.473
2004Q3	2677.993	2687.883	2689.068
2004Q4	2684.160	2694.342	2692.968
2005Q1	2687.117	2698.644	2697.397
2005Q2	2691.443	2701.949	2701.624
2005Q3	2694.135	2702.782	2705.689
2005Q4	2701.308	2709.103	2709.624
2006Q1	2705.060	2713.282	2713.456
2006Q2	2709.588	2716.477	2717.206
2006Q3	2713.207	2717.212	2720.889
2006Q4	2721.225	2723.447	2724.519
========			=======